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Vector Visualizations 
Vector visualizations of the Maxwell Equations are presented.  
They are used to motivate the behavior of an electromagnetic plane wave.  
 
Tensor Visualizations 
Inspired by Schouten's Tensor Calculus for Physicists, the tensor algebra of 
vectors and differential forms are accurately represented pictorially. Such 
visualizations may further develop one's geometric and physical intuition. 
Applications for electrodynamics and relativity are presented. An early 
attempt at these visualizations is available at 
http://physics.syr.edu/courses/vrml/electromagnetism/ .  

 
New versions are being developed using VPython and will appear at 

http://physics.syr.edu/~salgado/software/vpython/ .
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THE MAXWELL EQUATIONS THE MAXWELL EQUATIONS THE MAXWELL EQUATIONS THE MAXWELL EQUATIONS     
(as (as (as (as vector fieldsvector fieldsvector fieldsvector fields))))    

 

  

 

There are no Radial B’s. 

Anti-Curly E’s are associated 
with time-varying B’s. 

Curly B’s are associated with  
electric currents and time-varying E’s. 

Radial E’s are associated with 
electric point charges. 



Roberto B. Salgado (salgado@physics.syr.edu)  (GRC Physics Research and Education: Electromagnetism 
June 11-16, 2006 )       (3)  

The Electromagnetic Plane Wave (in pictures) 

 

 
So, in the next snapshot, the 
magnetic field vector should 
look more like the vector to its 
LEFT. 

So, in the next snapshot, the 
electric field vector should look 
more like the vector to its 
LEFT. 
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Note the wavefront and the 
rectangle representing the Poynting vector. 

So, in the next snapshot, the 
magnetic field vector should 
look more like the vector to its 
LEFT. 

So, in the next snapshot, the 
electric field vector should look 
more like the vector to its 
LEFT. 

That means that this 
configuration of field vectors 
should slide to the RIGHT. 

This is an 
electromagnetic  

plane wave. 
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The directed quantitiesThe directed quantitiesThe directed quantitiesThe directed quantities    

• displacements 

• gradients 
• “normals” to surfaces 

• fluxes 

appear to be appear to be appear to be appear to be vectorsvectorsvectorsvectors becaus becaus becaus because e e e 

of of of of symmetriessymmetriessymmetriessymmetries due to due to due to due to    

• dimensionality of the vector space 

• orientability of the vector space 
• existence of a “volume-form” 

• existence of a “metric tensor” 

• signature of the metric 

 

These symmetries  blur  the  

true nature of the directed quantity. 

AAllll  vveeccttoorrss  aarree    

NNOOTT  ccrreeaatteedd  eeqquuaall..  
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What is vector? 
“something with a magnitude and direction”? 

Well... no... that’s a “Euclidean Vector”  
(that is, a vector with a metric  [a rule for giving  

the lengths of vectors and the angles between vectors]) 
Not all vectors in physics are Euclidean vectors. 

 
A vector space  is a set with the properties of 

• addition  
(the sum of two vectors is a vector) 

• scalar multiplication 
(the product of a scalar and a vector is a vector) 

Elements of this set are called vectors . 
 

What is tensor? 
 
A tensor  [of rank n] is a multilinear function of n vectors 
(that is, inputting n vectors produces a scalar). 
They are useful for describing anisotropic  
(direction-dependent) physical quantities.  
For example, 

• metric tensor 
• moment of inertia tensor 
• elasticity tensor 
• conductivity tensor 
 

• electromagnetic field tensor 
• stress tensor 
• riemann curvature tensor 

 

If the vector has, for example, 3 components,  
then a rank-n tensor has 3n    components. 
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In three dimensions,  
there are eight directed quantities. 

 
From J.A. Schouten, Tensor Calculus for Physicists. 
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VECTORS VECTORS VECTORS VECTORS Va 
Representations 
• ordered PAIR OF POINTS with finite separation 
• directed line-segment (“an ARROW”) 
The separation is proportional to its size. 
 
Examples: 
• displacement   ar [in meters] as in 

ba

ab
rrkU 2

1=  

• electric dipole moment aa qdp = [in Coulomb-meters] as in 
a

aEpU −=  

• velocity  av [in meters/sec] as in 
ba

ab
vvmK 2

1=  

acceleration aa [in meters/sec2] as in 
b

aba
amF =  

 
 
 
 
 

    +                         = 
 
 
 
                  aV         +      aW              =         aa WV +  
                                                                 (via the parallelogram rule) 
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COVECTORS (ONECOVECTORS (ONECOVECTORS (ONECOVECTORS (ONE----FORMS) FORMS) FORMS) FORMS) ωωωωa 
Representations 
• ordered PAIR OF PLANES ( 0=a

a
Vω  and 1=a

a
Vω ) with 

finite separation 
•  (“TWIN-BLADES”) 
The separation is inversely- proportional to its size. 
 
Examples: 
• gradient   f

a
∇ [in [ ⋅][ f meters-1]  

• conservative force UF
aa

−∇= [in Joules/meter] as in 
a

aEpU −=  

• linear momentum “
aa

p
λ
ℏ= ” [in action/meter] 

     
aaa q

L

q

S
p

ɺ∂
∂=

∂
∂=  

aaa
F

q

H
p =

∂
∂−=  

  
• electrostatic field φ

aa
E −∇= [in Volts/meter], ∫−= γφ

a
E  

• magnetic field  
a

H
~

 [in Amperes/meter] as in ∫= ∂A aenclosed
Hi
~

 
 
 
 
 

           +                               = 
 
 
 
          
                   

a
ω                +            

a
η              =         

aa
ηω +  

                                                                          (via the co-parallelogram ru le) 
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BIVECTORS BIVECTORS BIVECTORS BIVECTORS Aab 
Representations 
• ordered PAIR OF VECTORS (via the wedge product) 
• directed two-dimensional planar region (“an AREA”) 
The area is proportional to its size. 
 
Examples: 
• area    abA [in meters2] as in ][ baab wlA =  
• magnetic dipole moment abab iA=µ [in Ampere-meter2] as in 

ab

abBU µ−=  
 
 
 
 

                                    = 
 
 
 
          
                   aV                      aW              =         ][ baWV  
                                                                          (like the “cross-product”) 
 
 
 
 
                             +                                 = 
 
 
 
 
               ][ baVU    +      ][ baWU               =         )( ]][ bba WVU +  
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TWOTWOTWOTWO----FORMS FORMS FORMS FORMS ββββab 
Representations 
• ordered PAIR OF CLOSED CURVES  
• directed cylinder (“a TUBE”) with finite cross-sectional area 
The cross-sectional area is inversely- proportional to its size. 
 
Examples: 
• magnetic induction 

ab
B  [Weber/meter2=Tesla]  

(magnetic flux per cross-sectional area) as in 0=∫∫∂ abV
B  

• electric induction 
ab

D
~

 [Coulomb/meter2]  

(electric flux per cross-sectional area) as in 
enclosedabV

qD π4
~ =∫∫∂  

• current density 
ab

j~  [Ampere/meter2] 

(charge flux per cross-sectional area) as in ∫∫+∫∫=∫ ∂
∂

∂ A bcA bctA a
jDH ~4

~~ π  

• Poynting vector 
][4

1
~~

baab
HES π=  [Watt/meter2] 

(energy flux per cross-sectional area) 
 
 
 
 
                                                                             = 

                                    = 
 
          
                   

a
α                                  

a
β                 =         

][ ba
βα   

 
 
 
 
                                 +                                          = 
 
 
 
        

][ ba
βα                +              

][ ba
γα                     =         )(

]][ bba
γβα +  
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TRANSVECTION / INNER PRODUCT 

(nonmetrical “dot product”)  
 
 
                                                                =                         = 1 
 
 
                    aV                       

a
ω               =       

a

aV ω           = 1  
 
 
 
 
                                                               =                          = 2 
 
 
                    aV                       

a
ω2               =       )2(

a

aV ω     = 2  
 
 
 
 
                                                               =                          = 0 
 
 
 
                    aV                       

a
β              =          

a

aV β         = 0 
 
 
In Gravitation (Misner, Thorne, Wheeler), this operation is 
described as counting the “bongs of a bell”. 
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METRIC TENSOR             gab 
A metric tensor is a symmetric tensor that can be u sed 
to assign “magnitudes” to vectors.  

ba

ab
VVgV =2

 
A metric tensor can also provide a rule to identify  a 
vector with a unique covector. The vector and its 
covector are “duals” of each other with this metric . 

Given a vector aV , in the presence of a metric,  
we can form the combination a

ab
Vg , which is a covector denoted by 

b
V . 

This is known as “index lowering”, a particular mov e when performing 
“index gymnastics”.  

the Euclidean metric:  

 

  

 

 

 
A similar pole-polar relationship can be demonstrated for 

Galilean                        Minkowski 

 

 

  

Va (the “pole”)   

Vb=gabV
a 

(the “polar”) 

gab 

This construction is due to  
W. Burke, Applied Differential 
Geometry.   
 
See also Burke, Spacetime, 
Geometry, and Cosmology. 

through the tip of the vectors, 
draw the tangents to the circle 

Applications for 
Relativity 
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A lightlike vector has  
zero length with a  
Minkowski metric.  

A vector of length 2  
with a Euclidean metric. 

A timelike vector of  
[about] length 2  
with a Minkowski metric.  

Note that 2)" oflength (")( ab
ab

a VVgV ==== . 

Here 4)( ====b
ab

a VgV . 
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In three dimensional space, the following are not  
directed-quantities. 

TRIVECTORS V V V Vabcabcabcabc
 

Representations 
• ordered TRIPLE OF VECTORS 
• sensed regions (“a VOLUME”) with finite size 
The volume is proportional to its size. 
 
Examples: 
• volume abcV [in meters3] as in ][ cbaabc hwlV =  

THREE-FORMS γabcabcabcabc    
Representations 
• ordered TRIPLE OF COVECTORS 
• cells (“a BOX”) which contain a finite volume 
The enclosed-volume is inversely- proportional to its size. 
 
Examples: 
• charge density 

abc
ρ~ [in Coulombs/meter3] as in 

abcV
q ∫∫∫= ρ~  

• energy density 
abc

u~ [in Joules/meter3] as in 
][8

1
~~

bcaabc
DEu π=  

 
 

VOLUME FORM        εεεεabc  
A volume form provides a rule to identify a vector with a 
unique two-form (in three dimensions), and vice ver sa. 
Vectors that are obtained from [ordinary] two-forms  in 
this way are known as pseudovectors. 
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b
E  

ab
B

t∂
∂

 abbc
D

t
j

~
,~
∂
∂

 

b
H
~

 

Ampere-Maxwell Faraday 
 

bc
D
~

 
abc

ρ~  

Gauss 

For rendering in 3 dimensions, visit the VRML Gallery of  Electromagnetism at 
physics.syr.edu/courses/vrml/electromagnetism/ 
…a new version is being produced using VPython at 
physics.syr.edu/~salgado/software/vpython/ 
 
In development… 
• How do these visualizations transform under a Lorentz boost?  
• How do these visualizations arise from the Electromagnetic Field Tensor 

Fab  (a differential form in spacetime)? 
 

These diagrams are from  
W. Burke,  
Applied Differential Geometry.   

THE MAXWELL EQUATIONS  
(as differential forms in Euclidean space) 
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The Electric 1The Electric 1The Electric 1The Electric 1----form field of a form field of a form field of a form field of a 

charged cylindercharged cylindercharged cylindercharged cylinder    

    

    

    

    

    

    

    

    

Faraday Law: Faraday Law: Faraday Law: Faraday Law: a field of Ea field of Ea field of Ea field of Electric 1lectric 1lectric 1lectric 1----forms forms forms forms 

associated with a timeassociated with a timeassociated with a timeassociated with a time----varying Magnetic 2varying Magnetic 2varying Magnetic 2varying Magnetic 2----form form form form 
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Related online links: 
 
Bill Burke (UC Santa Cruz) http://ucowww.ucsc.edu/~burke/   

has notes on “Twisted Forms” and unfinished draft of “Div Grad and Curl Are Dead”  
 
Differential Forms in Electromagnetic Theory http://www.ee.byu.edu/forms/forms-home.html 
Richard H. Selfridge, David V. Arnold and Karl F. Warnick 
(Brigham Young University, Dept of Electrical and Computer Engineering) 

“….In the Fall semester of 1995, we completely reworked our beginning electromagnetics course  
to use differential forms, and developed a set of course notes for use in the class.” 


