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The directed quantities 

• displacements 
• gradients 
• “normals” to surfaces 
• fluxes 

appear to be so due to symmetries 

• dimensionality of the vector space 
• orientability of the vector space 
• existence of a “volume-form” 
• existence of a “metric tensor” 
• signature of the metric 

 

These symmetries             the  

true nature of the  

 directed quantity. 

AAllll  vveeccttoorrss  aarree    

NNOOTT  ccrreeaatteedd  eeqquuaall..  
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What is vector? 
“something with a magnitude and direction”? 

Well... no... that’s a “Euclidean Vector”  
(a vector with a metric  [a rule for giving  

the lengths of vectors and  
the angles between vectors]) 

Not all vectors in physics are Euclidean vectors. 
 

A vector space  is a set with the properties of 
• addition  

      (the sum of two vectors is a vector) 
• scalar multiplication 

      (the product of a scalar and a vector is a vector) 
Elements of this set are called vectors . 
 

What is tensor? 
 
A tensor  [of rank n] is a multi-linear function of n vectors  
(which, upon inputting n vectors, produces a scalar). 
 
They are useful for describing anisotropic (direction-dependent) 
physical quantities. For example, 
 
 
 
 
 
If the vector has, for example, 3 components,  
then a rank-n tensor has 3n    components.  
(If you think about a vector as a column matrix, a tensor can be thought of as  
a [generalized] matrix. But that’s not really a good way to think about them.) 

• electromagnetic field tensor 
• stress tensor 
• riemann curvature tensor 

 

• metric tensor 
• moment of inertia tensor 
• elasticity tensor 
• conductivity tensor 
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In three dimensions,  
there are eight types of directed quantities . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From J.A. Schouten, Tensor Calculus for Physicists. 
 

A point worth re-emphasizing: 
Not all “vectors” in physics were “born as vectors” … they may 
have been born as covectors (1-forms), bivectors, o r 2-forms. 
 

Can we gain some physical and geometrical intuition  by 
visualizing the natural form of these directed-quan tities?  
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VECTORS VECTORS VECTORS VECTORS Va 
Representations 
• ordered PAIR OF POINTS with finite separation 
• directed line-segment (“an ARROW”) 
The separation is  
proportional to its size. 

(irrelevant features:  
thickness of the stem, size of the arrowhead) 

 
Examples: 
• displacement   ar   [in meters] as in   

ba

ab
rrkU 2

1=  

• electric dipole moment aa qdp =  [in Coulomb-meters] as in  
a

a EpU −=  

• velocity    av   [in meters/sec] as in  
ba

ab
vvmK 2

1=  

acceleration   aa   [in meters/sec2] as in   
b

aba
amF =  

 
 
 
 
 

    +                         = 
 
 
 
                  aV         +      aW              =         aa WV +  
                                                                 (via the parallelogram rule) 

a displacement 
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COVECTORS (ONECOVECTORS (ONECOVECTORS (ONECOVECTORS (ONE----FORMS) FORMS) FORMS) FORMS) ωωωωa 
Representations 
• ordered PAIR OF PLANES ( 0=a

a
Vω  and 1=a

a
Vω )  

with finite separation 
•  (“TWIN-BLADES”) 
The separation is  
inversely -proportional to its size. 

(irrelevant features:  
size, shape, and alignment of the planar surfaces) 

 
Examples: 
• gradient   f

a
∇    [in [ ⋅][ f meters-1]  

• conservative force UF
aa

−∇=  [in Joules/meter] as in   
a

a EpU −=  

• linear momentum aaa kp ℏ
ℏ == ""
λ  [in action/meter] 

         
aaa q

L

q

S
p

ɺ∂
∂=

∂
∂=  

aaa
F

q

H
p =

∂
∂−=  

  
• electrostatic field φ

aa
E −∇=  [in Volts/meter] as in  ∫−= γφ

a
E  

• magnetic field  
a

H
~

    [in Amperes/meter] as in  ∫= ∂A aenclosed
Hi
~

 
 
 
 
 

           +                               = 
 
 
 
          
                   

a
ω                +            

a
η              =         

aa
ηω +  

                                                                          (via the co-parallelogram ru le) 
 

a pair of 
neighboring 
equipotential 

surfaces 
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BIVECTORS BIVECTORS BIVECTORS BIVECTORS Aab 
Representations 
• ordered PAIR OF VECTORS (via the wedge product) 
• directed two-dimensional planar region (“an AREA”) 
The area is proportional to its size. 

(irrelevant features:  
shape of the planar surface) 

Examples: 
• area    abA    [in meters2] as in    ][ baab wlA =  

• force-couple (zero net-force “moment”)  [in (Newton/meter)-meter2]
][ baab FrM =  

• magnetic dipole moment abab iA=µ   [in Ampere-meter2] as in     
ab

abBU µ−=  
 
 
 
 
 
 

                                    = 
 
 
 
          
                   aV                      aW              =         ][ baWV  
                                                                           
 
 
 
 
 

                             +           = 
 
 
               ][ baVU    +      ][ baWU               =         )( ]][ bba WVU +  

an area 
 

wedge-product 
underlies the 
cross-product 

aU

)( bb WV +

bW

bV

aU aU
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TWOTWOTWOTWO----FORMS FORMS FORMS FORMS ββββab 
Representations 
• ordered PAIR OF CLOSED CURVES  
• directed cylinder (“a TUBE”) with finite cross-sectional area 
The cross-sectional area is inversely -proportional to its size. 

(irrelevant features:  
shape of the cross-section, length of the tube) 

 
Examples: 
• magnetic induction 

ab
B    [Weber/meter2=Tesla]  

(magnetic flux per cross-sectional area)  as in   0=∫∫∂ abV
B  

• electric induction 
ab

D
~

   [Coulomb/meter2]  

(electric flux per cross-sectional area)  as in  
enclosedabV

qD π4
~ =∫∫∂  

• current density 
ab

j~    [Ampere/meter2] 

(charge flux per cross-sectional area)  as in  ∫∫+∫∫=∫ ∂
∂

∂ A bcA bctA a
jDH ~4

~~ π  

• Poynting vector 
][4

1
~~

baab
HES π=  [Watt/meter2] 

(energy flux per cross-sectional area) 
 
 
 
 
                                                                             = 

                                    = 
 
          
                   

a
α                                  

a
β                 =         

][ ba
βα   

 
 
 
 

                                +              = 
 
 

        
][ ba

βα         +         
][ ba

γα           =         )(
]][ bba

γβα +  

a flux-tube:  
“density of field lines” 

 

aα aα

aα

bβ

bγ

)( bb γβ +
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TRANSVECTION / INNER PRODUCT 

(nonmetrical  

“dot product”) 

  
 

                                                                =                         = 1111 
 
 
                    aV                       

a
ω               =       

a

aV ω           = 1  
 
 
 
 

                                                               =                          = 2222 
 
 
                    aV                       

a
ω2               =       )2(

a

aV ω     = 2  
 
 
 
 

                                                               =                          = 0000 
 
 
 
                    aV                       

a
β              =          

a

aV β         = 0 
 
In Gravitation (Misner-Thorne-Wheeler),  
this operation is described as counting the “bongs of a bell”. 

underlies “potential difference” 

∫ ⋅−=∆
γ

ldEV
�
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METRIC TENSOR             gab 
A metric tensor is a symmetric tensor that can be u sed to 
assign “magnitudes” to vectors.  

ba

ab
VVgV =2

 
A metric tensor can also provide a rule to identify  a vector with 
a unique covector. The vector and its covector are “duals” of 
each other with this metric. 

Given a vector aV , in the presence of a metric,  
we can form the combination a

ab
Vg , which is a covector denoted by 

b
V . 

This is known as “index lowering”,  
a particular move when performing “index gymnastics ”.  

the Euclidean metric:  

 

  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Va (the “pole”)   

Vb=gabV
a 

(the “polar”) 

gab 

This construction is due to  
W. Burke, Applied Differential 
Geometry.  (See also Burke, 
Spacetime, Geometry, and 
Cosmology.)  
[First due to Schouten (1923)?] 

through the tip of the vectors, 
draw the tangents to the circle 

A vector of square-length 5  
with a Euclidean metric. 

Note that 2)" oflength (")( ab
ab

a VVgV ==== . 

Here 5)( =b
ab

a VgV . 
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A similar pole-polar relationship can be demonstrated for 

Galilean                 Minkowski 

 

 

  

A lightlike vector has  
zero length with a  
Minkowski metric. 

Timelike vectors  
for a spacetime metric. 

A spacelike vector for 
a Minkowski metric. 
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In three dimensional space, the following are not  
directed-quantities. 

TRIVECTORS V V V Vabcabcabcabc 
Representations 
• ordered TRIPLE OF VECTORS 
• sensed regions (“a VOLUME”) with finite size 
The volume is proportional to its size. 

(irrelevant features:  
shape of volume) 

 
Examples: 
• volume abcV  [in meters3] as in   ][ cbaabc hwlV =  

THREE-FORMS γabcabcabcabc    
Representations 
• ordered TRIPLE OF COVECTORS 
• cells (“a BOX”) which contain a finite volume 
The enclosed-volume is inversely -proportional to its size. 

(irrelevant features:  
shape of volume) 

Examples: 
• charge density 

abc
ρ~   [in Coulombs/meter3] as in   

abcV
q ∫∫∫= ρ~  

• energy density 
abc

u~   [in Joules/meter3] as in   
][8

1
~~

bcaabc
DEu π=  

 

VOLUME FORM        εεεεabcabcabcabc 

Specifying a volume form  provides a rule to identify a vector 
with a unique two-form (in three dimensions), and v ice versa. 
Vectors that are obtained from [ordinary] two-forms  in this way 
are known as pseudovectors. (Some two-forms can be 
obtained from bivectors when a metric tensor  is specified.) 
 

a volume 
 

a [volume] 
density 
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MAXWELL EQUATIONS FOR 

ELECTROMAGNETISM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bc
D
~

 
abc

ρ~  

abbc
D

t
j

~
,~
∂
∂

 

b
H
~

 

b
E  

ab
B

t∂
∂

 

Ampere-Maxwell Faraday 
 

Gauss 

These diagrams are from  
W. Burke,  

Applied Differential Geometry.  
 

To see these rendered in three dimensions, visit my  
VRML Gallery of Electromagnetism (1996) 

physics.syr.edu/courses/vrml/electromagnetism/ 
 

Hopefully soon, it will be available on my VPYTHON page 
physics.syr.edu/~salgado/software/vpython/ 
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