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outline

motivations
the Cayley-Klein Geometries (various starting points)

Relativity (Trilogy of the Surveyors)

development of “ Spacetime Trigonometry”
as a unified approach to the geometry of
Galilean and Special Relativity

[affine] Cayley-Klein Geometries (tour of more starting points)

Spacetime Trigonometry:

“geometry of the Galilean spacetime

as a bridge to Special Relativity”

(How can some of the ideas be introduced to

a physics student without all of the machinery that is available?



an infamous puzzle
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Spacetime Trigonometry

GOAL.: Teach relativity by
developing geometric intuition
about spacetime.

HOW?
Exploit the trigonometric analogies

: can its conceptual
*Euclidean space aspects be slipped

] ; into introductory
*Galilean spacetime =S O physics??

*Einstein-Minkowski spacetime




EUCLIDEAN

rotation

GALILEAN
boost

MINKOWSKIAN
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where v = tang 6.

Yaglom defines cosg 8 = 1, sing & = 0 so that tang 8 = %%—% = 6.
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where v = tanh 8.
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But first...

the classical Geometries

(Cayley-Klein) measure of Distance between Points

Initially-parallel
lines...

“elliptic” “parabolic” “hyperbolic”
Elliptic Euclidean Hyperbolic
Spherical Space Flat Space Hyperbolic Space

EUCLID’s FIFTH
(Playfair)

Given a line and

a point not on that line,
there exists

precisely one line
through that point

which does not intersect
(i.e., 'is parallel to")
the given line.

http://astronomy.swin.edu.au/cosmos, ritical+Density
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the Cayley-Klein Geometries

Sommerville
uses “duality” {7
between points </ -
and lines o e
\________,,J

Projective Geometry:
the geometry of perspective

Duality:

symmetry between points and lines

Any two distinct points are incident goined
with exactly one line. y

Any two distinct lines are incident  Meet
with exactly one point. at



the Cayley-Klein Geometries

Sommerville
uses “duality”
between points

measure of Distance between Points

and lines “elliptic” “parabolic” “hyperbolic”
? Elliptic Euclidean Hyperbolic
S “elliptic’
-
)
:
o co-Euclidean doubly- co-Minkowskian
[T Parabolic
o parabolic
<
©
= co-Hyperbolic Minkowskian doubly-
S “hyperbolic” Hyperbolic
S




measure of Distance between Points

elliptic parabolic hyperbolic
[Initially parallel lines...] Intrinsic Curvature
Positive Zero Negative
0 Elliptic Euclidean Hyperbolic
S g b MASS-SHELL in
- Special
O o Relativity
= = ; ; ;
g ol © co-Euclidean doubly- co-Minkowskian
o c;?; 2 (+,0) ANTI- Parabolic
§ Sl NEWTON- GALILEAN NEWTON-
“ = '% HOOKE RELATIVITY HOOKE
S = = co-Hyperbolic Minkowskian doubly-
7 S boli
g 5 (+,-) ANTI- SPECIAL Hyperbolic
S % DE-SITTER RELATIVITY DE-SITTER




measure of Angle between Lines

elliptic

parabolic

hyperbolic

rasure of Distance between Points

| parabolic | hyperbolic

intrinsic Curvature k

Zera

®{+'+] e = —1
2+,0 | €= 0 ANTI- GALILEAN
o NEWTON-HOOKE RELATIVITY
g co-Hyperbolic Minkowskian
o) | €2 = +1 ANTI-
DE-SITTER SPECIAL RELATIVITY DE-SITTER
(+7 _62)
ds’ = g dzdz®
(1 nPy?)dt? — (1 — n?t?)eldy? — 2ne*ty dt dy
§ (1 — 7222 — 2y?))?
ds® = dt® — > dy? (n° =0)




PHYSICS:  Trilogy of the Surveyors

i

Euclid’s Galileo’s Einstein’s Minkowski’s
Geometry Relativity Relativity Spacetime
(300 BC) (1632) (1905) Geometry

(1908)

2—_ 2 -
simultaneity (“same t”) :
IS absolute 1-

‘ simultaneity is not absolute

inspired by the “Para-ble of the Surveyors™ in |
Spacetime Physics by Taylor and Wheeler




CIRCLES and the METRIC (separation of points)

Proper [Wristwatch] time, "Space”

spatial distance

R2 J— t2 — 62 yz (dL)2=—£—12(dS)2
dsQZ(dngé(dg') €2 £0 z(dt dy) (_OEl, ?)(da‘)

dy
. ( dt dy ) ( 1 0 ) ( dt ) = ((i;t;)g—:lz((ft)g
_ 2
0 —e dy 9 (dL)? = (dy)?

— dt? — € dy? =0 _(dtay) (0 0)(dt)

. . . . 01 dy
radius vector is a timelike-vector ds? > 0

spacelike-vector is tangent to the circle,

(dL)? = { (dy)® - é(dt)2 for €2 # 0
perpendicular to timelike

(dy)? for €2 =0

null-vector has ds? =0




HYPERCOMPLEX NUMBERS

Maximum Signal Speed
R2 = 2 — 2 42
. 2 __ 2
Physically, €“ = (ciight/Cmaz)

Minkowskian ¢, = Cigne (finite): e? = 1 [but € # 1] (double numbers)
Galilean Crmae = 00 (infinite): e? = 0 [but € # 0] (dual numbers)
Euclidean Crnaz = 1Cligne (finite, imaginary): €
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HYPERCOMPLEX NUMBERS R2 — 2 _ 2 yz

Maximum Signal Speed

It is convenient (but not necessary) to introduce the following “generalized complex” or
“hypercomplex” number systems. Consider quantities of the form z = a + ¢b,
where a and b are real-numbers and ¢ is the “generalized imaginary number"”.
These quantities can be given a matrix representation:

1.9 a 0 €E —
Lcl 1_(0 1) ”"_(0 a)

—_ O
N

complex €= ( g =i ) abeh=|™ ~H ) Euclidean

(5
o (00 | (a0 :
dual (¢ =0 [e # 0]) € = ( 10 ) a+eb= ( £ o ) Galilean
b
a

double (€ = 1 [c £1])| ¢ = ( - ) ateb=[ " Minkowskian
Do formal calculations
(these number systems have “divisors of zero") in which € is treated
1/e implies ex = 1 1/(1+¢€) implies (14+€)z = 1 never evaluated
Er — ¢ (1-e)z = 1—e until the last step.
0 = ¢ 0 = 1—¢€
impossible! impossible! All physical quantities
. 2
involve €~ alone.
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ANGLE (separation of lines)
/ dL

Rapia’ify
= — / \/dg — —df? = \/de%_wz = %sinl‘f%ﬁ‘g//ﬂ) an? { _ 6_ (dt)? for €2 £ 0
(dy)? for €2 =0
cy = Rsinh(e®) | 2 _
t = Recosh(eO). 2
Euclidean case (¢* = —1) Minkowskian case (¢ = +1) s
y = Rsin(0,) y= Remh(0:) 18]
t= Reos() t = Rcosh(6,,) ol

case (¢ = 0),

0, = R/(]L—R/dy——

Y= Rﬁg = R Sing(é’g)
t=R = R cosg(l,)

Cosg(Qg) = 1 and sing(Qg) =g, e

y = R SINHOG
GENERALIZED Trig Functions —_— R COSH @

€ =+1




SLOPE = TANGENT( ANGLE ) y = R SINH®
Velocity = TANH ( Rapidity ) t = R COSH®
. | Ay

s VT A

. — TANHG®
= tanf, = tangf, = tanh 6,
| = TANH(O)
” = TANH(Oy9 — O1¢)

_ TANH©2, — TANH Oy

11— €e2TANHO, TANHO4q

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

V20 — V10
EUC e =—1 v91 =

1 4+ voq1g
GAL e= 0| V21 = Vg — V10

V20 — V10
MIN e =+1 V91 =

1 — w9010



EULER and TRIGONOMETRIC functions

Relativistic “factors”
EXP O = exp(eO)

€0)?2 €©)3 €O)4 /8 == ta.n[19
BPPORINC NC NC D — cosh,,
_ [1+(ee)2+(ee)4+_“‘ ¥ = coshb,,
S By = sinh§
(€©)® (e©)° — m
ol ] k = cosh#,, +sinh@
= cosh (e©) + sinh (€O) m m
_ [1+e2"23_!2+€4‘2_:+...] = expb,,

e3 e°
2 4
+€|:e+€§+6?+':|

= COSH © + ¢ SINH ©
sinh(e®) ¢ SINH ©

TANH © = tanh(e0) = = '
€ 111 1(( ) (-_()H]l(f(_)) COSH (_)

EXP(—®) = COSH © — ¢ SINH ©

(—©) 1 ekt snsip Differential Identities
EXP(—0) = gebraic laentities ]
EXP(® { O -
(©) 1 = COSH?6 — ¢’SINH?*6 @EXP © = ¢EXPO
R el TANH ©, + TANH O, (_]COSH 0 — €.2 SINH ©
TANH(81+82) = 17 & TANH 6, TANA 6; (1(-)[
COSHO® = (1-— ¢ TANH20) 1/2 %SINH © = COSH®
FTe

(—{TANH ©® = 1-—¢ TANH?0
de



Every vector can be thought of
as the HYPOTENUSE
of some RIGHT triangle.

Project the vector into components parallel and perpendicular to a given direction.
“Drop the perpendicular” by constructing parallels to the tangent of the circle.



Projection onto a line
Time dilation

The “proper time”
is the hypotenuse
along the radius.

The “apparent time”
is the projection onto
our observer’s t-axis.

cosh

t

.
cosf, cosgl, coshb,,

0




an example of applied Spacetime Trigononometry

The Clock Effect / Twin Paradox

COSH’0® — €2SINH?’O =1

2 2 SINH’® )\ _
Chan'e (1 ¥ COSH“(—)) =

1
V1 — e2TANH?©

COSH 6 =

—1 Euclidean
€™ = (0 Galilean
+1 Minkowskian

1
h@,,=
€08 \/1 —(+)tanh?8,,
1

Galilean Relativity Special Relativity



Law of COSINES

F = b+a
G ¢ = b-b+a-a+2b-a
& = b+ a*+ 2ba COSH (m/BCS)

In terms of the proper-time elapsed,

(f_qB)Q = (114(3)2 = (tcg)g + 2t actcp COSH (T?’LZBCS)

Comparing this with the identity

\ 4 cosh (tac +tep)” =|(tac)” + (tep)* |+ 2tactes
P—_ and using the facts that cosf. <1, cosgf, =1, and cosh6,, > 1,
T the Law of Cosines implies the following relations:
) (, - . . "
tap <tsc +top for e = —1 triangle inequality
tag =tac +top for €€ =0 non- “clock effect”

tag >tac +tep for €€ = +1 “clock effect”



Rotations

Boost transformations

Consider a linear transformation V'’ = R(@)T?, where R satisfies: — "\\
Han
detR =1 R(0) =1 __:_____I.l_l/__:__l.].T_
RTGR=G R(O)R(®) = R(O + D) Ul S ;’///7
=
PP . 1 0 NI
In terms of an orthogonal basis {t,7} with metric G = 0 —2 ]

R(@) = COSH © €°SINH © is a “rotation” for that metric. ll
SINH® COSH ©

cosg b, 0 — cose 0 1 0y (1
singf, cosgl, | &Y% tangd, 1 /] \ B

coshf,, sinhf, \ 1 tanh @, \ 1 B \\\‘f—’[, T
(sinhem coshﬂm)_COSham(tanhﬁm 1 )_’Y(ﬂ 1)'111';\”\



Eigenvectors and Eigenvalues

“"Absolute” invariants

COSH © €2SINH ©
Rl ( SINH® COSH @)

eigenvalue eigenvectors
EUC 0= ( g ) (better: invariant vector)
GAL |1  "absolute length” g = ( [i) “absolute time”
, A 1 1
MIN | cosh @ + sinh § = exp(+6) k= 7\ 1
l+wv : A 1 1 “absolute
= 4/ =D Doppler-Bondi factor | and | = 7 ( 1 ) speed of light”




An interesting trigonometry problem

" TRSINH ©
0 Te T
: TrCOSH ©

M\oving\» [Recéding] Receiver

(COSH © — SINH ©)
= Tr COSHO(1 — TANH ©)

= TR(l)(l — U) Gal

£ = 1_& - (observer moving away from a
- ' stationary source)

1s

- 1 a ) Mi (vg(1—2%) Gal
= — v In
R‘\/]. — U2 = ¢ T

i — —< Mi
_ T, v k Vg s Min

1+ v



An interesting trigonometry problem

Doppler effect (unified)

Moving [Receding] Source
I =
Ts =

Ts(COSH © + SINH ©)

1
T
“(COSH © +SINH ©)

v I (source moving away
fo = fo = fs  from a stationary
U+ 0y ) 1 Vg ¥ :

4 observer)

Moving [Receding] Receiver

Ts = 7Txr(COSH © —SINH ©)
vs(l—2) Gal
VR = —
Vg 1+§ Min

(14.10)

Vp

( 1
Vg - Gal
(l-l-g)
4
j -
£ Min
k Vg ].-I-E I




Curve of constant curvature

Uniformly accelerated observer (unified)

The curvature p of a plane curve is a measure of how the angle ¢ of the
tangent vector ; changes with arc-length s along the curve. We will consider a timelike
plane curve y(t), i.e., a curve whose tangent is everywhere timelike.

The acceleration p of a worldline is a measure of how the rapidity ¢ of the
velocity vector ; changes with proper-time s along the curve.

do do dt
ds dt ds

.
1- ()"

We seek the curve of constant curvature: p = «g:

2
' %Oif —-'3')2_l(f—f')2_i('_2 R = e
Y — Yo 2\ ) = o if €2 = +1 hyperbola

|f 62 — U, 1 .
y— Yo = §(m(t — ) { parabola



EUCLID’s FIRST

Causal Structure of Spacetime

EUCLID’s FIRST

“To draw a stralght line from any pomt to any point.”
EUCLID’s FIFTH EUCLID’s FIRST .
(Playfair) (like Playfair dualized) Spacetlme
Given a line and | Given a point and geometries fail
a point not on that line, | | a line not through that point, . 1 :
there exists | there exists Euclid’'s First
precisely one line . | no point |
through that point . | on that line Postulate!
which does not intersect | | which cannot be joined to - Infinitely-
(i.e., 'is parallel to") (i.e., “is parallel / inaccessible to") | many
the given Ilne | | the glven pomt by an ordinary Ilne points

/




advanced topic: Visualizing Tensor Algebra

GRAVITATION - . . . .
The “circle” is a visualization
. . |
of its metric tensor g, !
24
Vva This construction
1.5 “the pole” | 15 due to W. Burke,
' © POIC | Applied Differential Geometry
T through the pole, draw
. y the tangents to the conic
0. .
| | a _
N e o 05 i gabv — Vb
) “the polar [hyperplane]”
Figurs 2.4. gab -0.51 /
The vector separation v = # — &, between two neighboring evenss ~ MELIIC tersOr -
]

#,and #; 3 1-form o; and the plercing of o by v 10 give the number
{0, v) = (number of surfaces plercad) =44
(4.4 “bongy of bell™). When & is made of surfaces of constant phase,

[2.00, 0.36,-1.37 |

sg-norm=4.0090

115,231, 0.00)

Galilean
metric

Minkowskian
metric

Euclidean Siege)




Some problems | am working on:

Interpret the “Law of Sines” physically.
(Interpret a result from [Euclidean] geometry in terms of
a physical situation in spacetime.)

Collisions (in Galilean and Special Relativity) —
elastic collisions, inelastic collisions, coefficient of restitution;
energy (Kinetic and Rest energy), spatial-momentum

Hypercomplex numbers — do Geometry as one does with Complex Numbers
(Dual numbers are used in robotics. How?)

Differential Geometry with “degenerate metrics” (Galilean limits)
Connection to Norman Wildberger’s Universal Hyperbolic Trigonometry?

Electromagnetism (Maxwell’'s Equations)
Galilean-invariant version (Jammer and Stachel)
“If Maxwell had worked between Ampere and Faraday?”

De Sitter spacetimes as analogues of Elliptic and Hyperbolic Geometries



conclusions

Cayley-Klein geometry

provides geometrical analogies

which can be given kinematical interpretations
.... starting with the Galilean case,

onto the Special Relativistic case,

and further onto the deSitter spacetimes

(the simplest General Relativistic cases)

may be an easier approach to
learning Relativity

Galilean Limits are clarified



Energy-Momentum Space

=10 e? = +1

Two identical particles i

with mass m:
one at rest 04 E

in this frame,

the other traveling with

velocity v = TANH(O) \ mass-shel _— .
m? >0

| t-form, th t toris m=( "SOSH ©

n component-form, the energy-momentum vectoris m = {  cini @

a=o] = mamg e )=(mis)) ()

Note: In the Galilean case, the “energy component” is always the “rest mass”.

5 . [ mcosh 6, \ mcosh O, [ ym
e=+1 ™=\ msinh . / \ mecosh 6,,tanh 6,, /] \ ymv




Conservation of Energy-Momentum

A particle with rest-mass M decays into two particles with rest-masses m; and m,

Conservation: M = mq + mso

MCOSH © \ [ m; COSH 6, 4 ™2 COSH O,
MSINH ® / \ m;SINH ©, ma SINH O, ma

Geometrically, this is a triangle formed with future-timelike-vectors.

MV ]\ mn MoU2

In the Galilean case, “energy conservation” implies “conservation of total rest mass”.

'M Y1 m Yom

2 111 212

= +1 — +

‘ ( MV ) ( Y11 ) ( Y22V )




3.16. Particle 4, at rest, decays into particles B and C (4 — B + C).
(a) Find the energy of the outgoing particles, in terms of the various masses.

2 2 2
m: + mi — m
[Answer: Ep=—2 2 L4 cz]
2m,

Energy-momentum

decay

Griffiths

(b) Find the magnitudes of the outgoing momenta.

(Elementary Particles) ~ VNG, . ) 7
Answer: psl = Pl = AR
. 0 2m,
B é ¢ where A is the so-called triangle function:
4z 8 AX, y, 2)=x2+ 32+ 22— 2xy — 2xz — 2yz.

A (¢) Note that A factors: Ma?, P, cB)=(a+b+cNa+b—cNa—b+cNa—-b
— ¢). Thus |pgl goes to zero when m, = mg + mc, and runs imaginary if
m4 < (mgs + me). Explain.

. Law of Cosines: C2=A%24+B?_-2A-B
m% = m2A + sz —2mamp COSH®p
so Ep=A-B=mgCOSHOz = (m% +m% —m?2)/(2m)
« Law of Sines yields: SINHO; _ SINHO5

— Generalized
mpg mo Heron formula

Multiply by half of

the productofthe ~ Mamc SINH©¢ _mamp SINH@®p __( triangle | Vv
three masses 2 - 9 - T

area

. - mamgSINH © VA
pp = ||A x B|| = =242 E =

ma 2’}’TLA




Galilean-invariant
Electromagnetism

(Jammer and Stachel)

V-B=0 V x E = aaB
ot
— — — D
V-D=p VxH=3Iﬁ%t
with D = kE and B = uH



