Spacetime Trigonometry: a Cayley-Klein Geomety approach to Special and General Relativity

Rob Salgado UW-La Crosse Dept. of Physics

outline

- motivations
- the Cayley-Klein Geometries (various starting points)
- Relativity (Trilogy of the Surveyors)
- development of "Spacetime Trigonometry" as a unified approach to the geometry of Galilean and Special Relativity
- [affine] Cayley-Klein Geometries (tour of more starting points)
- Spacetime Trigonometry: "geometry of the Galilean spacetime as a bridge to Special Relativity" (How can some of the ideas be introduced to a physics student without all of the machinery that is available?

an infamous puzzle

The Clock Effect / Twin Paradox

Rac G. Hant

The Clock Effect / Twin Paradox

Spacetime Trigonometry

GOAL: Teach relativity by developing <u>geometric</u> intuition about spacetime.

$$\begin{array}{c} \begin{array}{c} t' = (\cos\theta)t + (-\sin\theta)y & t' = \left(\frac{1}{\sqrt{1+v^2}}\right)t + \left(\frac{-v}{\sqrt{1+v^2}}\right)y \\ \text{where } v = (\sin\theta)t + (\cos\theta)y & y' = \left(\frac{v}{\sqrt{1+v^2}}\right)t + \left(\frac{1}{\sqrt{1+v^2}}\right)y \\ \text{where } v = \tan\theta. \end{array} \end{array} \left. \begin{array}{c} \epsilon^2 = -1 \\ \epsilon^2 = -1 \\ \epsilon^2 = 0 \\$$

But first....the classical Geometries

(Cayley-Klein) measure of **Distance between Points**

the Cayley-Klein Geometries

Sommerville uses "**duality**" between points and lines

Projective Geometry:

the geometry of perspective

Duality:

symmetry between points and lines

Any two distinct <u>points</u> are incident with exactly one <u>line</u>.

Any two distinct <u>lines</u> are incident with exactly one <u>point</u>.

Meet at

by

the Cayley-Klein Geometries

Sommerville uses " duality" between points and lines		measure of Distance between Points			
		"elliptic"	"parabolic"	"hyperbolic"	
measure of Angle between Lines	"elliptic"	Elliptic	Euclidean	Hyperbolic	
	"parabolic"	co-Euclidean	doubly- Parabolic	co-Minkowskian	
	"hyperbolic"	co-Hyperbolic	Minkowskian	doubly- Hyperbolic	

				measure of Distance between Points			
				elliptic	parabolic	hyperbolic	
				[Initially parallel lines] intrinsic Curvature			
				Positive	Zero	Negative	
measure of Angle between Lines	elliptic	Jre	(+,+)	Elliptic	Euclidean	Hyperbolic MASS-SHELL in Special Relativity	
	parabolic	etric Signatu	(+,0)	co-Euclidean ANTI- NEWTON- HOOKE	doubly- Parabolic GALILEAN RELATIVITY	co-Minkowskian NEWTON- HOOKE	
	hyperbolic	M	(+, -)	co-Hyperbolic ANTI- DE-SITTER	Minkowskian SPECIAL RELATIVITY	doubly- Hyperbolic DE-SITTER	

$$ds^{2} = g_{ab} dx^{a} dx^{b}$$

$$= \frac{(1 + \eta^{2} \epsilon^{2} y^{2}) dt^{2} - (1 - \eta^{2} t^{2}) \epsilon^{2} dy^{2} - 2\eta^{2} \epsilon^{2} ty dt dy}{(1 - \eta^{2} (t^{2} - \epsilon^{2} y^{2}))^{2}}$$

$$ds^{2} = dt^{2} - \epsilon^{2} dy^{2} \qquad (\eta^{2} = 0)$$

PHYSICS: Trilogy of the Surveyors

CIRCLES and the METRIC (separation of points)

Proper [Wristwatch] time, "Space"

$$R^2 = t^2 - \epsilon^2 y^2$$
 $ds^2 = (d\vec{s})^{ op} \widetilde{G}(d\vec{s})$
 $= \begin{pmatrix} dt \ dy \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -\epsilon^2 \end{pmatrix} \begin{pmatrix} dt \\ dy \end{pmatrix}$
 $= dt^2 - \epsilon^2 \ dy^2$

radius vector is a **timelike-vector**

spatial distance

$$\neq \mathbf{0} \qquad (dL)^2 = -\frac{1}{\epsilon^2} (dS)^2$$

$$= \begin{pmatrix} dt & dy \end{pmatrix} \begin{pmatrix} -\frac{1}{\epsilon^2} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} dt \\ dy \end{pmatrix}$$

$$= (dy)^2 - \frac{1}{\epsilon^2} (dt)^2$$

$$= \mathbf{0} \qquad \begin{pmatrix} (dL)^2 = (dy)^2 \\ = \begin{pmatrix} dt & dy \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} dt \\ dy \end{pmatrix}$$

$$(dL)^{2} = \begin{cases} (dy)^{2} - \frac{1}{\boldsymbol{\epsilon}^{2}} (dt)^{2} & \text{for } \boldsymbol{\epsilon}^{2} \neq 0\\ (dy)^{2} & \text{for } \boldsymbol{\epsilon}^{2} = 0 \end{cases}$$

spacelike-vector is tangent to the circle,

perpendicular to timelike

 $ds^2 > 0$

 ϵ^2

 ϵ^2

HYPERCOMPLEX NUMBERS Maximum Signal Speed

$$R^2 = t^2 - \epsilon^2 y^2$$

Physically, $\epsilon^2 = (c_{light}/c_{max})^2$

Minkowskian	$c_{max} = c_{light}$ (finite):	$\epsilon^2 = 1$ [but $\epsilon \neq 1$] (double numbers)
Galilean	$c_{max} = \infty$ (infinite):	$\epsilon^2 = 0$ [but $\epsilon \neq 0$] (dual numbers)
Euclidean	$c_{max} = ic_{light}$ (finite, imaginary):	$\epsilon^2 = -1$ (complex numbers)

HYPERCOMPLEX NUMBERS

Maximum Signal Speed

It is convenient (but not necessary) to introduce the following "generalized complex" or "hypercomplex" number systems. Consider quantities of the form $\mathbf{z} = \mathbf{a} + \epsilon \mathbf{b}$, where a and b are real-numbers and ϵ is the "generalized imaginary number". These quantities can be given a matrix representation:

real
$$1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 $a = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$ $\epsilon = \begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix}$ $\epsilon = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $a = \begin{pmatrix} a & 0 \\ b & a \end{pmatrix}$ Euclideancomplex $\epsilon = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ $a + \epsilon b = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ Euclideandual ($\epsilon^2 = 0 \ [\epsilon \neq 0]$) $\epsilon = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ $a + \epsilon b = \begin{pmatrix} a & 0 \\ b & a \end{pmatrix}$ Galileandouble ($\epsilon^2 = 1 \ [\epsilon \neq 1]$) $\epsilon = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $a + \epsilon b = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$ Minkowskian(these number systems have "divisors of zero")Do formal calculations in which ϵ is treated

Dual
$$(\epsilon^2 = 0 \ [\epsilon \neq 0])$$
:Double $(\epsilon^2 = 1 \ [\epsilon \neq 1])$:algel $1/\epsilon$ implies $\epsilon x = 1$ $1/(1+\epsilon)$ implies $(1+\epsilon)x = 1$ neve $\epsilon^2 x = \epsilon$ $(1-\epsilon^2)x = 1-\epsilon$ $0 = 1-\epsilon$ impossible!impossible!All place

All physical quantities involve
$$\epsilon^2$$
 alone.

$$R^2 = t^2 - \frac{\epsilon^2}{\epsilon^2} y^2$$

ANGLE (separation of lines) $\Theta = \frac{1}{R} \int dL$ Rapidity $\Theta = \frac{1}{R} \int \sqrt{dy^2 - \frac{1}{\epsilon^2} dt^2} = \int \frac{dy}{\sqrt{R^2 + \epsilon^2 y^2}} = \frac{1}{\epsilon} \sinh^{-1}(\epsilon y/R)$ $(dL)^{2} = \begin{cases} (dy)^{2} - \frac{1}{\boldsymbol{\epsilon}^{2}} (dt)^{2} & \text{for } \boldsymbol{\epsilon}^{2} \neq 0\\ (dy)^{2} & \text{for } \boldsymbol{\epsilon}^{2} = 0 \end{cases}$ $\epsilon y = R \sinh(\epsilon \Theta)$ $\epsilon^2 = 0$ $t = R \cosh(\epsilon \Theta).$ 27 Euclidean case $(\epsilon^2 = -1)$ Minkowskian case $(\epsilon^2 = +1)$ 1.8 $y = R\sin(\theta_e)$ $y = R\sinh(\theta_m)$ 1.6 $t = R\cos(\theta_e) \qquad \qquad t = R\cosh(\theta_m)$ 1.4 -1.2-Gal case ($\epsilon^2 = 0$), Min Euc $\epsilon^2 = +1$ $\theta_g = \frac{1}{D} \int dL = \frac{1}{D} \int dy = \frac{y}{D}$ $\epsilon^2 = -1$ 0.6 0.4 $y = R\theta_g = R \operatorname{sing}(\theta_g)$ $t = R = R \cos(\theta_a)$ 0.2-0.4 0.6 0.8 1.2 1.4 1.6 02 1.8 $\cos(\theta_q) = 1$ and $\sin(\theta_q) = \theta_q$ $y = R \, \operatorname{SINH} \Theta$ (Yaglom) Galilean Trig Functions $t = R \, \operatorname{COSH}$ **GENERALIZED Trig Functions**

EULER and TRIGONOMETRIC functions

Relativistic "factors"

$$\begin{aligned} \mathsf{EXP} \ \Theta &\equiv \exp(\epsilon\Theta) \\ &= 1 + (\epsilon\Theta) + \frac{(\epsilon\Theta)^2}{2!} + \frac{(\epsilon\Theta)^3}{3!} + \frac{(\epsilon\Theta)^4}{4!} + \cdots \\ &= \left[1 + \frac{(\epsilon\Theta)^2}{2!} + \frac{(\epsilon\Theta)^4}{4!} + \cdots\right] \\ &+ \left[(\epsilon\Theta) + \frac{(\epsilon\Theta)^3}{3!} + \frac{(\epsilon\Theta)^5}{5!} + \cdots\right] \\ &= \operatorname{cosh} (\epsilon\Theta) + \operatorname{sinh} (\epsilon\Theta) \\ &= \left[1 + \epsilon^2 \frac{\Theta^2}{2!} + \epsilon^4 \frac{\Theta^4}{4!} + \cdots\right] \\ &+ \epsilon \left[\Theta + \epsilon^2 \frac{\Theta^3}{3!} + \epsilon^4 \frac{\Theta^5}{5!} + \cdots\right] \\ &= \operatorname{COSH} \Theta + \epsilon \operatorname{SINH} \Theta \end{aligned}$$

$$egin{array}{rcl} eta &=& anh heta_m \ \gamma &=& \cosh heta_m \ eta \gamma &=& \sinh heta_m \ k &=& \cosh heta_m + \sinh heta_m \ &=& \exp heta_m \end{array}$$

 $\mathsf{TANH}\ \Theta \equiv \tanh(\epsilon\Theta) = \frac{\sinh(\epsilon\Theta)}{\cosh(\epsilon\Theta)} = \frac{\epsilon\ \mathsf{SINH}\ \Theta}{\mathsf{COSH}\ \Theta}$

Differential Identities

$$\frac{d}{d\Theta} \text{EXP } \Theta = \epsilon \text{ EXP } \Theta$$
$$\frac{d}{d\Theta} \text{COSH } \Theta = \epsilon^2 \text{ SINH } \Theta$$
$$\frac{d}{d\Theta} \text{SINH } \Theta = \text{ COSH } \Theta$$
$$\frac{d}{d\Theta} \text{TANH } \Theta = 1 - \epsilon^2 \text{ TANH }^2 \Theta$$

$$\begin{split} & \mathsf{EXP}(-\Theta) = \frac{\mathsf{COSH}~\Theta}{\mathsf{EXP}(-\Theta)} = \frac{1}{\frac{1}{\mathsf{EXP}(\Theta)}} \end{split}$$

Algebraic Identities

$$1 = \text{COSH}^2\Theta - \epsilon^2 \text{SINH}^2\Theta$$

$$\text{TANH} (\Theta_1 + \Theta_2) = \frac{\text{TANH} \Theta_1 + \text{TANH} \Theta_2}{1 + \epsilon^2 \text{ TANH} \Theta_1 \text{ TANH} \Theta_2}$$

$$\text{COSH} \Theta = (1 - \epsilon^2 \text{ TANH}^2\Theta)^{-1/2}$$

Every vector can be thought of as the HYPOTENUSE of some RIGHT triangle.

Project the vector into components parallel and perpendicular to a given direction. "Drop the perpendicular" by constructing parallels to the tangent of the circle.

an example of applied Spacetime Trigononometry

The Clock Effect / Twin Paradox

Law of COSINES

Rotations

Boost transformations

Consider a linear transformation $\vec{V}' = R(\Theta)\vec{V}$, where R satisfies:

 $\det R = 1 \qquad \qquad R(0) = I$ $R^T G R = G \qquad \qquad R(\Theta) R(\Phi) = R(\Theta + \Phi)$

In terms of an orthogonal basis $\{\hat{t}, \hat{y}\}$ with metric $G = \begin{pmatrix} 1 & 0 \\ 0 & -\epsilon^2 \end{pmatrix}$

 $\boldsymbol{R}(\boldsymbol{\Theta}) = \begin{pmatrix} \mathsf{COSH} \; \boldsymbol{\Theta} \; \epsilon^2 \mathsf{SINH} \; \boldsymbol{\Theta} \\ \mathsf{SINH} \; \boldsymbol{\Theta} \; \; \mathsf{COSH} \; \boldsymbol{\Theta} \end{pmatrix} \text{ is a "rotation" for that metric.}$

$$\begin{pmatrix} \cos g \theta_g & 0\\ \sin g \theta_g & \cos g \theta_g \end{pmatrix} = \cos g \theta_g \begin{pmatrix} 1 & 0\\ \tan g \theta_g & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0\\ \beta & 1 \end{pmatrix}$$

$$\begin{array}{cc} \cosh\theta_m & \sinh\theta_m \\ \sinh\theta_m & \cosh\theta_m \end{array} \end{array} = \cosh\theta_m \left(\begin{array}{cc} 1 & \tanh\theta_m \\ \tanh\theta_m & 1 \end{array} \right) = \gamma \left(\begin{array}{cc} 1 & \beta \\ \beta & 1 \end{array} \right)$$

Eigenvectors and Eigenvalues

"Absolute" invariants

$\boldsymbol{R}(\boldsymbol{\Theta}) = \begin{pmatrix} \mathsf{COSH} \; \boldsymbol{\Theta} \; \; \boldsymbol{\epsilon}^2 \mathsf{SINH} \; \boldsymbol{\Theta} \\ \mathsf{SINH} \; \boldsymbol{\Theta} \; \; \mathsf{COSH} \; \boldsymbol{\Theta} \end{pmatrix}$

Moving [Receding] Receiver

 $T_{S} = T_{R}(\text{COSH }\Theta - \text{SINH }\Theta)$ = $T_{R} \text{ COSH }\Theta(1 - \text{TANH }\Theta)$

$$f_{\rm o} = \left(1 - \frac{v_{\rm o}}{v}\right) f_{\rm s}$$
 (observer moving away from a stationary source)

$$= T_R(1)(1-v) \text{ Gal}$$

$$= T_R \frac{1}{\sqrt{1-v^2}}(1-v) \text{ Min}$$

$$= T_R \sqrt{\frac{1-v}{1+v}}$$

$$u_R = \begin{cases}
u_S(1-rac{v}{c}) & \text{Gal} \\
&
u_S \sqrt{rac{1-rac{v}{c}}{1+rac{v}{c}}} & \text{Min}
\end{cases}$$

Curve of constant curvature

Uniformly accelerated observer (unified)

EUCLID's FIRST

Causal Structure of Spacetime

EUCLID's FIRST

"To draw a straight line from any point to any point."

advanced topic:

Visualizing Tensor Algebra

Some problems I am working on:

Interpret the "Law of Sines" physically.

(Interpret a result from [Euclidean] geometry in terms of a physical situation in spacetime.)

Collisions (in Galilean and Special Relativity) -

elastic collisions, inelastic collisions, coefficient of restitution; energy (Kinetic and Rest energy), spatial-momentum

Hypercomplex numbers – do Geometry as one does with Complex Numbers (Dual numbers are used in robotics. How?)

Differential Geometry with "degenerate metrics" (Galilean limits)

Connection to Norman Wildberger's Universal Hyperbolic Trigonometry?

Electromagnetism (Maxwell's Equations)

Galilean-invariant version (Jammer and Stachel) "If Maxwell had worked between Ampere and Faraday?"

De Sitter spacetimes as analogues of Elliptic and Hyperbolic Geometries

conclusions

- Cayley-Klein geometry provides geometrical analogies which can be given kinematical interpretations starting with the Galilean case, onto the Special Relativistic case, and further onto the deSitter spacetimes (the simplest General Relativistic cases)
- may be an easier approach to learning Relativity
- Galilean Limits are clarified

Energy-Momentum Space

$$\begin{array}{c} \boldsymbol{\epsilon^2=+1} \quad \tilde{m}=\left(\begin{array}{c} m\cosh \ \theta_m \\ m\sinh \ \theta_m \end{array}\right)=\left(\begin{array}{c} m\cosh \ \theta_m \\ m\cosh \ \theta_m \tanh \ \theta_m \end{array}\right)=\left(\begin{array}{c} \gamma m \\ \gamma m v \end{array}\right)$$

Conservation of Energy-Momentum

A particle with rest-mass M decays into two particles with rest-masses m₁ and m₂.

Conservation:
$$\tilde{M} = \tilde{m}_1 + \tilde{m}_2$$

 $\begin{pmatrix} M \text{ COSH } \Theta \\ M \text{ SINH } \Theta \end{pmatrix} = \begin{pmatrix} m_1 \text{ COSH } \Theta_1 \\ m_1 \text{ SINH } \Theta_1 \end{pmatrix} + \begin{pmatrix} m_2 \text{ COSH } \Theta_2 \\ m_2 \text{ SINH } \Theta_2 \end{pmatrix}$
Geometrically, this is a triangle formed with future-timelike-vectors.
 \tilde{M}
 θ_2
 \tilde{m}_1
 \tilde{m}_2
 \tilde{m}_2

Galilean-invariant Electromagnetism (Jammer and Stachel)

```
\begin{aligned} \nabla \cdot \vec{B} &= 0 \qquad \nabla \times \vec{E} = -\alpha \frac{\partial \vec{B}}{\partial t} \\ \nabla \cdot \vec{D} &= \rho \qquad \nabla \times \vec{H} = \vec{j} + \beta \frac{\partial \vec{D}}{\partial t} \\ \text{with } \vec{D} &= \kappa \vec{E} \text{ and } \vec{B} = \mu \vec{H}. \end{aligned}
```